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Radiocarbon (14C) is a critical tool for understanding the global carbon cycle. During the
Anthropocene, two new processes influenced 14C in atmospheric, land and ocean carbon
reservoirs. First, 14C-free carbon derived from fossil fuel burning has diluted 14C, at rates that
have accelerated with time. Second, ‘bomb’ 14C produced by atmospheric nuclear weapon tests
in the mid-twentieth century provided a global isotope tracer that is used to constrain rates of
air–sea gas exchange, carbon turnover, large-scale atmospheric and ocean transport, and other
key C cycle processes. As we write, the 14C/12C ratio of atmospheric CO2 is dropping below
pre-industrial levels, and the rate of decline in the future will depend on global fossil fuel
use and net exchange of bomb 14C between the atmosphere, ocean and land. This milestone
coincides with a rapid increase in 14C measurement capacity worldwide. Leveraging future
14C measurements to understand processes and test models requires coordinated international
effort—a ‘decade of radiocarbon’ with multiple goals: (i) filling observational gaps using
archives, (ii) building and sustaining observation networks to increase measurement density
across carbon reservoirs, (iii) developing databases, synthesis and modelling tools and (iv)
establishing metrics for identifying and verifying changes in carbon sources and sinks.

This article is part of the Theo Murphy meeting issue ’Radiocarbon in the Anthropocene’.

1. Importance of radiocarbon in studying the global C cycle
14C, the radioactive isotope of carbon (half-life ca 5700 years), produced naturally in the
atmosphere by cosmic rays and rapidly incorporated into CO2, undergoes radioactive decay as
it is distributed between the land, ocean and atmospheric reservoirs. Tracing this distribution
provides insights into carbon cycle processes that occur on a range of timescales [1,–3]. On
multi-century to millennial timescales associated with deep ocean circulation, sediment burial
or soil formation, radioactive decay of 14C provides a measure of how long carbon has been
isolated from exchange with the atmosphere (e.g. [4,5]). Past changes in atmospheric 14C
production, and distribution of 14C among ocean and land C reservoirs are recorded in the
atmospheric record preserved in tree rings (e.g. [6,–8]) and marine archives [9]. Such variations
have provided the basis for extensive application of 14C as a dating tool, and in paleoclimate and
paleoenvironmental reconstructions [10]. Recent human alteration of 14C has provided additional
ways to trace C cycling on timescales of years to decades.

The burning of carbon in fossil fuels that was fixed millions of years ago and thus has no
remaining 14C dilutes the isotopic ratio of 14C/12C in atmospheric CO2. Suess [11] first measured
this decline and used it to link an observed rise in CO2 with the burning of fossil fuels. As fossil
fuel emissions have increased since the industrial revolution, so has this ‘Suess effect’ (figure 1).

Variations in atmospheric 14C due to natural and fossil effects were dwarfed by the production
of 14C during atmospheric nuclear weapons testing in the 1950s and early 1960s (figure 1). This
‘bomb’ 14C, most of which was produced in a few large nuclear tests just before the Partial Nuclear
Test Ban treaty went into effect in 1963, nearly doubled atmospheric 14C/12C in the Northern
Hemisphere in a few years, producing a global isotope tracer that has since propagated into ocean
and land C reservoirs.

Over the decades since 1963, the 14C/12C of the atmosphere declined as bomb 14C mixed into
terrestrial and oceanic carbon reservoirs, and by ongoing dilution by fossil C that is playing an
increasingly important role. The level of 14C/12C in atmospheric CO2 has now dropped back
to its preindustrial level [16]. This decreasing trend will persist if fossil fuel emissions continue,
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Figure 1. Radiocarbon in the Anthropocene. (a) Measured �14C (14C/C) in atmospheric CO2 between 1950 and 2015 from a
compilation [12] together with future projections for the global mean�14C in three scenarios with different greenhouse gas
emissions trajectories and different global average temperatures in 2100 (1.5°C: SSP1–1.9, 1.8°C: SSP1–2.6 and 3.6°C: SSP3–7.0;
[3]). The compilation combines various data sources and is representative of tropical regions [12]. Data are reported with typical
normalization and correction [13]. (b) Simulated global mean�14C in terrestrial vegetation and soil carbon and (c) simulated
globalmean�14C in ocean carbon at the surface and at 500 m and 1500 mdepths from the CESM2model’s historical and SSP3–
7.0 experiments of the Large Ensemble (member 1001.001) following CMIP6 protocols [14,15]. Also plotted in (b) and (c) is the
�14C in atmospheric CO2 from the compilation and the SSP3-7.0 scenario. In (b) areas poleward of 60° are excluded. The grey
vertical bars indicate the proposed International Decade of Radiocarbon.

but it will cease if fossil fuel emissions are curtailed ([3,17]; figure 1). We are now in a new era in
which gradients are reversed: 14C/12C of atmospheric CO2 becomes lower than that in the surface
ocean and land biosphere [16,17]. This important juncture highlights the unique sensitivity of 14C
to changes in the balance of processes modulating Earth’s carbon cycle, and also highlights the
value of time-series observations of important reservoirs to track trajectories of future change.

Despite longstanding recognition of the diagnostic power of 14C as both a tracer and in-built
‘clock’ for understanding carbon cycle processes and carbon cycle change, its potential is far from
fully realized. This is largely due to the logistical challenges and costs that have traditionally
been associated with preparing and analysing samples for 14C content. As a consequence, 14C
measurements have been applied sparingly, largely in support of other analyses. Especially
during the early decades following the 1960s, radiocarbon laboratories used decay-counting
methods that required large (greater than 1 g C) samples and the global capacity was of the
order of hundreds of samples per year in a given laboratory. The advent of accelerator mass
spectrometry (AMS) in the 1980s greatly alleviated sample size requirements, but initially few
instruments were in operation. Moreover, 14C measurements have largely been contained within
specific disciplines or within expert groups, resulting in a lack of freely accessible datasets and
modelling tools. Although 14C is recommended to be included in international observation
programmes (https://gcos.wmo.int/en/essential-climate-variables/; [18]) as well as in earth
system modelling [19,20], only one model incorporating 14C in both land and ocean components
has reported output in the latest version of the carbon-climate model intercomparison effort
CMIP6 (CESM2, https://esgf-node.llnl.gov/projects/cmip6/; [14,21]). There has also been a
perception in some research communities that the utility of 14C has diminished as atmospheric
14C/12C has dropped over the decades since the bomb tests. These considerations have resulted
in limited usage of radiocarbon by the carbon cycle community despite the potential it holds for
understanding key processes. In particular, 14C can provide vital constraints for processes that
influence C cycling on decadal to centennial timescales that are needed to understand current and
future anthropogenic carbon uptake and storage, including deliberate carbon removal activities
(e.g. [22]).

2. Current opportunities
Recent years have seen dramatic advances in 14C measurement speed, versatility and sensitivity;
a trend that will likely continue. Moreover, the advent of compact, lower-cost AMS systems
[23], including those with CO2-accepting ion sources [24], has resulted in a rapid increase in
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the number of AMS instruments installed in different laboratories worldwide and an associated
increase in global capacity that is likely now well in excess of 100 000 14C measurements per year.
This change allows for contemplation of 14C measurement programmes that would have been
unthinkable a few decades ago in terms of scope, sample type and size. For the study of specific
processes, the increased sensitivity of AMS has even allowed for new applications of 14C as a
deliberately added low-level tracer (e.g. [25]).

Concomitant with these instrumental advances is the implementation of 14C into new
modelling tools, including next-generation earth system models of the global carbon cycle [14]
and atmospheric inverse models for regional GHG source identification [26]. New methods are
now available for offline simulation of 14C from the numerical output of carbon-climate models
[27]. Furthermore, new databases have been initiated and are being actively updated to compile
previously disparate observations (e.g. [28–30]).

Given these developments, we see many powerful 14C applications that could start or expand
with more coordinated action to observe, compile and interpret 14C data. Specific initiatives
include: (i) verification/attribution of changes in fossil fuel emissions of CO2, CH4 and aerosol
carbon. For example, measurements of 14C/12C have enabled the evaluation of officially reported
fossil fuel CO2 emissions [12,26] including local fossil-derived enhancements in CO2 [30–32],
while 14C in aerosol smoke helps identify the age of burned C [34] or the fossil fraction of
anthropogenic aerosol sources [35]; (ii) elucidation of processes and timescales involved in carbon
storage by tracing bomb 14C incorporation over time. Mitigation strategies for sequestering C, for
example through land management, must also assess how long C will remain in storage [36,37];
(iii) detection and attribution of C loss from reservoirs most vulnerable to change. These include
release of older C from thawing permafrost [38,39] or changing ventilation of various parts of
the global ocean [40,41]; (iv) testing of the basic understanding built into carbon cycle models
at a range of scales, either through use of models to predict 14C values for comparison with
observations or to infer transit time and age distributions within carbon pools (e.g., soils); (v)
application of deliberate tracer approaches to determine reaction rates or follow the partitioning
of carbon over many months and years. For example, an experiment with 14C enrichment in a
whole forest provided strong evidence that C in forest soils is more derived from roots than from
surface litter [42].

3. The need for a ‘Decade of Radiocarbon’
Maximizing the benefits of the changing radiocarbon tracer, especially given the current switch
in gradients between atmosphere, ocean and land, will require a coordinated observational and
modelling effort over a sustained period: an ‘International Decade of Radiocarbon’. Similar to the
International Polar Years in 1882–1883, 1932–1933, 1957–1958 and 2007–2008 (next planned for
2032–2033), this would involve a comprehensive global census to quantify the present and past
distributions of 14C across Earth’s dynamic carbon pools over the past decades that can guide
sampling into the future (box 1). We propose a decade-long programme rather than only 1 or 2
years since some of the activities will need more time to implement or require multiple stages.
Along with new observations, a concerted effort to compile existing and emerging data, and to
develop and share teaching and modelling tools, will be essential to expand the use and utility
of 14C in carbon cycle studies. This initiative requires cooperation among scientists, funders and
other parties across many countries, particularly those which are underrepresented with respect
to existing observations.

In some cases, radiocarbon analyses could be added to ongoing efforts to characterize C
stocks and fluxes. However, this ‘add-on’ approach is how 14C measurements have been made
in the past, and has led to the current uneven patchwork of measurements that can be difficult
to synthesize. Global measurements of 14C/12C in atmospheric CO2, critical to applications
across a variety of fields, have been largely maintained by individual researchers [26,46–49]
via insecure and intermittent funding. Samples are sometimes stored for long periods before
analysis, introducing latency global atmospheric records. Spatial coverage has been sparse and
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Box 1. A decade of radiocarbon—specific needs.

Measurements
— Geographical expansion of records of radiocarbon in air in under-sampled areas

including over the Southern Ocean and the tropics and in continental and urban areas
for verification of changes in fossil fuel emissions at local/regional scales.

— Identification, measurement and preservation of archived samples and natural
archives (e.g. soils, sediments, speleothems, corals, tree rings, waters) that can
strategically add to tracing bomb 14C through carbon pools over the last decades.

— New measurements to document ongoing changes in 14C in C reservoirs, particularly
those involving losses of older, yet vulnerable carbon pools to climate change (e.g. via
increased decomposition of rapidly warming high latitude soils).

— Development of new 14C tracer labelling experiments to determine carbon uptake
rates and turnover times.

Synthesis

— Data discovery to recover and make historical data accessible.
— Expansion of existing and creation of new databases that collate older data and

provide repositories for new data (with key metadata) for specific carbon reservoirs,
including the atmosphere, soils, ocean waters and sediments in a coordinated fashion.

— Generation of data products for use as common benchmarks for models.
— Linkage to data quality and intercomparison efforts such as the Greenhouse Gas

Measurement Techniques [43] and Radiocarbon intercomparisons (e.g. [44]) to ensure
ongoing data quality improvements.

— Inter-laboratory comparison of 14C measurements on the same samples in
order to validate data, establish across-laboratory calibrations, and facilitate data
homogenization and dissemination [44,45].

Modelling

— Development of best practice recommendations and common tools for 14C modelling
in various realms, including off-line simulations based on existing carbon cycle
models.

— Development of tools and approaches for integrating radiocarbon processes in carbon
cycle models and evaluation against observations.

— Engagement with the Earth System Modelling community and other communities to
promote use of 14C observations into model developments for process understanding
and evaluation.

sporadic, particularly for key sites in the tropics and the Southern Hemisphere. Huge efforts
went into surveying 14C in the oceans during coordinated ocean sampling campaigns like
GEOSECS, WOCE and GLODAP [50] and into ongoing repeat transects in GO-SHIP. However,
measurements of 14C in oceanic dissolved inorganic carbon are no longer a level-1 priority and
presently only one or two cruises per year are sampled for 14C measurements, despite their
continued value for assessing ocean ventilation and circulation [51]. Measurements of 14C/12C
in soils are often only available for one point in time even though repeated measurements
can provide much stronger constraints on carbon turnover [52], and they are overwhelmingly
concentrated in temperate forest biomes. Radiocarbon measurements of C fluxes—for example
respiration from soils or plants—also provide direct constraints on how fast C transits complex
systems [53] but are even sparser.
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Given both the burgeoning global capacity to measure 14C and number of researchers
who use this important tool, as well as the urgency to make the most of inadvertent global
tracer experiments resulting from fossil fuel use and bomb testing, we find it time to bring
the geophysical and biogeochemical communities together to forge an International Decade of
Radiocarbon measurement, integration and modelling. It would be a great shame if we miss the
opportunity to harness the power of 14C as a tool to understand our changing carbon cycle, verify
changes in fossil emissions, and evaluate the efficacy of nature-based carbon removal practices
currently being developed [54].

To realize the vision of the International Decade of Radiocarbon beginning in the late 2020s
we have started to promote discussions at relevant international conferences including the
Radiocarbon in the Anthropocene meeting at Whittlebury Park, UK (May 2022), and at the 24th

Radiocarbon conference in Zurich, Switzerland (September 2022). The purpose of this Opinion
Piece is to further highlight this initiative and to catalyse future discussions, coordination and
planning activities.
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